目录
这篇博客主要是使用Keras框架微调Inception V3模型对卫星图片进行分类,并测试;
1. 流程概述
微调Inception V3对卫星图片进行分类;整个流程可以大致分成四个步骤,如下:
- (1)Satellite数据集准备;
- (2)搭建Inception V3网络;
- (3)进行训练;
- (4)测试;
2. 准备数据集
2.1 Satellite数据集介绍
用于实验训练与测试的数据集来自于中提供的实验卫星图片数据集;
Satellite数据集目录结构如下:
# 其中共6类卫星图片,训练集总共4800张,每类800张;验证集共1200张,每类200张;Satellite/ train/ glacier/ rock/ urban/ water/ wetland/ wood/ validation/ glacier/ rock/ urban/ water/ wetland/ wood/
3. Inception V3网络
待补充;
4. 训练
4.1 基于Keras微调Inception V3网络
from keras.application.incepiton_v3 import InceptionV3, preprocess_inputfrom keras.layers import GlobalAveragePooling2D, Dense# 基础Inception_V3模型,不包含全连接层base_model = InceptionV3(weights='imagenet', include_top=False)# 增加新的输出层x = base_model.outputx = GlobalAveragePooling2D()(x) # 添加Global average pooling层x = Dense(1024, activation='relu')(x)predictions = Dense(6, activation='softmax')(x)
4.2 Keras实时生成批量增强数据
# keras实时生成批量增强数据train_datagen = ImageDataGenerator( preprocessing_function=preprocess_input, # 将每一张图片归一化到[-1,1];数据增强后执行; rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True,)val_datagen = ImageDataGenerator( preprocessing_function=preprocess_input, rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True,)# 指定数据集路径并批量生成增强数据train_generator = train_datagen.flow_from_directory(directory='satellite/data/train', target_size=(299, 299),#Inception V3规定大小 batch_size=64)val_generator = val_datagen.flow_from_directory(directory='satellite/data/validation', target_size=(299,299), batch_size=64)
4.3 配置transfer learning & finetune
from keras.optimizers import Adagrad# transfer learningdef setup_to_transfer_learning(model,base_model):#base_model for layer in base_model.layers: layer.trainable = False model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 配置模型,为下一步训练 # finetunedef setup_to_fine_tune(model,base_model): GAP_LAYER = 17 # max_pooling_2d_2 for layer in base_model.layers[:GAP_LAYER+1]: layer.trainable = False for layer in base_model.layers[GAP_LAYER+1:]: layer.trainable = True model.compile(optimizer=Adagrad(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
4.4 执行训练
# Step 1: transfer learningsetup_to_transfer_learning(model,base_model)history_tl = model.fit_generator(generator=train_generator, steps_per_epoch=75, # 800 epochs=10, validation_data=val_generator, validation_steps=64, # 12 class_weight='auto' )model.save('satellite/train_dir/satellite_iv3_tl.h5')# Step 2: finetunesetup_to_fine_tune(model,base_model)history_ft = model.fit_generator(generator=train_generator, steps_per_epoch=75, epochs=10, validation_data=val_generator, validation_steps=64, class_weight='auto')model.save('satellite/train_dir/satellite_iv3_ft.h5')
5. 测试
5.1 对单张图片进行测试
# *-coding: utf-8 -*"""使用h5模型文件对satellite进行测试"""# ================================================================import tensorflow as tfimport numpy as npfrom skimage import iofrom keras.models import load_modeldef normalize(array): """对给定数组进行归一化 Argument: array: array 给定数组 Return: array_norm: array 归一化后的数组 """ array_flatten = array.flatten() array_mean = np.mean(array_flatten) mx = np.max(array_flatten) mn = np.min(array_flatten) array_norm = [(float(i) - array_mean) / (mx - mn) for i in array_flatten] return np.reshape(array_norm, array.shape)def img_preprocess(image_path): """根据图片路径,对图片进行相应预处理 Argument: image_path: str 输入图片路径 Return: image_data: array 预处理好的图像数组 """ img_array = io.imread(image_path) img_norm = normalize(img_array) size = img_norm.shape image_data = np.reshape(img_norm, (1, size[0], size[1], 3)) return image_datadef index_to_label(index): """将标签索引转换成可读的标签 Argument: index: int 标签索引位置 Return: human_label: str 人可读的标签 """ labels = ["glacier", "rock", "urban", "water", "wetland", "wood"] human_label = labels[index] return human_labeldef classifier_satellite_byh5(image_path, model_file_path): """对给定单张图片使用训练好的模型进行分类 Argument: image_path: str 输入图片路径 model_file_path: str 训练好的h5模型文件名称 Return: human_label: str 人可读的图片标签 """ image_data = img_preprocess(image_path) # 加载模型文件 model = load_model(model_file_path) predictions = model.predict(image_data) human_label = index_to_label(np.argmax(predictions)) return human_labeldef classifier_satellite_byh5_hci(image_path): """用于对从交互界面传来的图片进行分类 Argument: image_path: str Return: human_label: str 人可读的图片标签 """ # 模型文件,如果有新的模型需要修改 model_file_path = "satellite/train_dir/models/satellite_iv3_ft.h5" image_data = img_preprocess(image_path) # 加载模型文件 model = load_model(model_file_path) predictions = model.predict(image_data) human_label = index_to_label(np.argmax(predictions)) return human_label# 测试单张图片if __name__ == "__main__": image_path = "satellite/data/train/glacier/40965_91335_18.jpg" model_file_path = "satellite/train_dir/models/satellite_iv3_ft.h5" human_label = classifier_satellite_byh5(image_path, model_file_path) print(human_label)
6. 可视化分类界面
6.1 交互界面设计
# encoding: utf-8"""交互界面:使用训练好的模型对卫星图片进行分类;"""from tkinter import *import tkinterimport tkinter.filedialogimport osimport tkinter.messageboxfrom PIL import Image, ImageTkimport test_satellite_bypb# 窗口属性root = tkinter.Tk()root.title('Satellite图像分类')root.geometry('800x600')formatImg = ['jpg']def resize(w, h, w_box, h_box, pil_image): # 对一个pil_image对象进行缩放,让它在一个矩形框内,还能保持比例 f1 = 1.0*w_box/w # 1.0 forces float division in Python2 f2 = 1.0*h_box/h factor = min([f1, f2]) width = int(w*factor) height = int(h*factor) return pil_image.resize((width, height), Image.ANTIALIAS)def showImg(): img1 = entry_imgPath.get() # 获取图片路径地址 pil_image = Image.open(img1) # 打开图片 # 期望显示大小 w_box = 400 h_box = 400 # 获取原始图像的大小 w, h = pil_image.size pil_image_resized = resize(w, h, w_box, h_box, pil_image) # 把PIL图像对象转变为Tkinter的PhotoImage对象 tk_image = ImageTk.PhotoImage(pil_image_resized) img = tkinter.Label(image=tk_image, width=w_box, height=h_box) img.image = tk_image img.place(x=50, y=150)def choose_file(): text_showClass.delete(0.0, END) # 清空输出结果文本框,在再次选择图片文件之前清空上次结果; selectFileName = tkinter.filedialog.askopenfilename(title='选择文件') # 选择文件 if selectFileName[-3:] not in formatImg: tkinter.messagebox.askokcancel(title='出错', message='未选择图片或图片格式不正确') # 弹出错误窗口 return else: e.set(selectFileName) # 设置变量 showImg() # 显示图片def ouputOfModel(): # 完成识别,显示类别 # 图片文件路径 text_showClass.delete(0.0, END) # 清空上次结果文本框 img_path = entry_imgPath.get() # 获取所选择的图片路径地址 # 判断是否存在改图片 if not os.path.exists(img_path): tkinter.messagebox.askokcancel(title='出错', message='未选择图片文件或图片格式不正确') else: # 得到输出结果,以及相应概率 human_label = test_satellite_bypb.classifier_satellite_img(img_path) # 通过训练的模型,计算得到相对应输出类别 # 清空文本框中的内容,写入识别出来的类别 text_showClass.config(state=NORMAL) text_showClass.insert('insert', '%s\n' % (human_label))################### 窗口部件##################e = tkinter.StringVar() # 字符串变量# label : 选择文件label_selectImg = tkinter.Label(root, text='选择图片:')label_selectImg.grid(row=0, column=0)# Entry: 显示图片文件路径地址entry_imgPath = tkinter.Entry(root, width=80, textvariable=e)entry_imgPath.grid(row=0, column=1)# Button: 选择图片文件button_selectImg = tkinter.Button(root, text="选择", command=choose_file)button_selectImg.grid(row=0, column=2)# Button: 执行识别程序按钮button_recogImg = tkinter.Button(root, text="开始识别", command=ouputOfModel)button_recogImg.grid(row=0, column=3)# Text: 显示结果类别文本框text_showClass = tkinter.Text(root, width=20, height=1, font='18',)text_showClass.grid(row=1, column=1)text_showClass.config(state=DISABLED)root.mainloop()
6.2 后台核心代码:模型加载并分类
# *-coding: utf-8 -*"""使用h5模型文件对satellite进行测试"""# ================================================================import tensorflow as tfimport numpy as npfrom skimage import iofrom keras.models import load_modeldef normalize(array): """对给定数组进行归一化 Argument: array: array 给定数组 Return: array_norm: array 归一化后的数组 """ array_flatten = array.flatten() array_mean = np.mean(array_flatten) mx = np.max(array_flatten) mn = np.min(array_flatten) array_norm = [(float(i) - array_mean) / (mx - mn) for i in array_flatten] return np.reshape(array_norm, array.shape)def img_preprocess(image_path): """根据图片路径,对图片进行相应预处理 Argument: image_path: str 输入图片路径 Return: image_data: array 预处理好的图像数组 """ img_array = io.imread(image_path) img_norm = normalize(img_array) size = img_norm.shape image_data = np.reshape(img_norm, (1, size[0], size[1], 3)) return image_datadef index_to_label(index): """将标签索引转换成可读的标签 Argument: index: int 标签索引位置 Return: human_label: str 人可读的标签 """ labels = ["glacier", "rock", "urban", "water", "wetland", "wood"] human_label = labels[index] return human_labeldef classifier_satellite_byh5(image_path, model_file_path): """对给定单张图片使用训练好的模型进行分类 Argument: image_path: str 输入图片路径 model_file_path: str 训练好的h5模型文件名称 Return: human_label: str 人可读的图片标签 """ image_data = img_preprocess(image_path) # 加载模型文件 model = load_model(model_file_path) predictions = model.predict(image_data) human_label = index_to_label(np.argmax(predictions)) return human_labeldef classifier_satellite_byh5_hci(image_path): """用于对从交互界面传来的图片进行分类 Argument: image_path: str Return: human_label: str 人可读的图片标签 """ # 模型文件,如果有新的模型需要修改 model_file_path = "satellite/train_dir/models/satellite_iv3_ft.h5" image_data = img_preprocess(image_path) # 加载模型文件 model = load_model(model_file_path) predictions = model.predict(image_data) human_label = index_to_label(np.argmax(predictions)) return human_label# 测试单张图片if __name__ == "__main__": image_path = "satellite/data/train/glacier/40965_91335_18.jpg" model_file_path = "satellite/train_dir/models/satellite_iv3_ft.h5" human_label = classifier_satellite_byh5(image_path, model_file_path) print(human_label)